The generator matrix 1 0 1 1 X^2 1 1 1 X^2+X 1 1 X 1 X^3+X^2 1 X^2+X 1 X^3+X^2+X 1 1 1 1 X^3+X^2 1 X^3 X X^3 X^3+X^2+X 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 X^2+X 1 X^2+X+1 X^2 X^3+1 1 X^3+X X^3+X+1 1 X^2+1 1 X^3+X^2+X 1 X^3+X^2 1 X^3+X^2+X+1 X^2+1 X^2 X^3+1 1 X^2+X+1 1 1 X 1 X^3+X+1 X+1 1 X^2+X+1 X^3+X X^3+X X^3+X^2+X+1 X^3 X^2+1 X^2+X X^2+X 0 0 0 X 0 X^3+X X X^3+X X^3 0 X^3+X^2+X X^2 X X^2 X^2 X^3+X X^3+X^2+X X^2+X X^3+X^2 X^3 X^3 X^2 X^3+X^2+X X^3+X^2+X X X^2 X^2 X^3+X 0 0 X^3+X^2+X X^3+X X^2 X^3+X X^3 X^3+X^2+X 0 X^2+X X^3+X^2 X^2 X^3 0 0 0 X^3 0 X^3 X^3 X^3 X^3 0 0 X^3 X^3 0 0 0 0 X^3 X^3 0 X^3 X^3 0 0 X^3 0 X^3 0 0 0 X^3 0 X^3 0 X^3 X^3 0 X^3 0 0 generates a code of length 40 over Z2[X]/(X^4) who´s minimum homogenous weight is 36. Homogenous weight enumerator: w(x)=1x^0+80x^36+474x^37+520x^38+724x^39+647x^40+692x^41+439x^42+332x^43+71x^44+62x^45+27x^46+16x^47+4x^49+5x^50+1x^52+1x^54 The gray image is a linear code over GF(2) with n=320, k=12 and d=144. This code was found by Heurico 1.16 in 0.14 seconds.